metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guo-Sheng Huang,^a Yi-Zhi Li,^b Yong-Xiang Ma,^a* Qing-Bao Song^a and Yong-Min Liang^a

 ^aNational Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and
^bCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

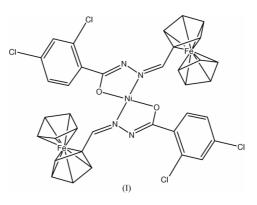
Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

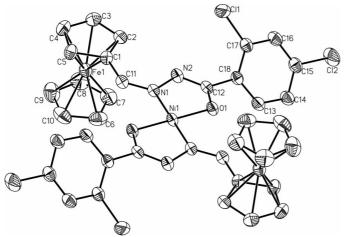
Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.036 wR factor = 0.094 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved


Bis[1-(2,4-dichlorobenzoylhydrazonomethyl)ferrocene(1–)]nickel(II)

The title complex, $[Ni(C_{18}H_{13}Cl_2FeN_2O)_2]$, results from the reaction of Ni(OAc)₂·4H₂O (Ac is acetyl) and 2,4-dichlorobenzoylhydrazine in anhydrous ethanol. The complex molecule is centrosymmetric, with the enolizable O atom and the azomethine N atom of the ligand coordinating to the nickel ion to form a five-membered chelate ring. The N₂O₂ coordinating atoms and the central Ni ion are coplanar.


Received 2 September 2002 Accepted 17 September 2002 Online 27 September 2002

Comment

Schiff bases from acylhydrazine and their complexes have strong antitumour and antivirus activities (Ali & Bose, 1984), while the ferrocenyl group can improve these properties (Ali *et al.*, 1973). Some ferrocene derivatives are excellent non-linear optical materials (Long, 1995), because they can act as strong electron donors and contain electron-flow bridges. Due to the possible wide-ranging uses, the structures of these compounds are of interest. In the present work, we report a new crystal structure of an Ni complex of a ferrocene derivative, (I).

In (I), the Ni atom is located at a center of symmetry (Fig. 1). The sum of the interior angles in the chelate ring is 540.0 (3) $^{\circ}$, so the five atoms involved are coplanar. The sum of the three bond angles around C12 is 359.8 (2)°, which shows that atom C12 has essentially sp^2 hybridization. The Ni–O and Ni-N bond distances are normal (Table 1). As expected, the C12-O1 bond length [1.304 (3) Å] lies between those of a C-O single bond and a C=O double bond. The bond lengths N1-C11 [1.299 (3) Å] and N2-C12 [1.305 (3) Å] are identical and close to that of typical of C=N (1.30 Å). These results show that the -CH=N-N=C-O fragment of the ligand remains as a conjugated system even after the loss of an H atom from its enolized carbonyl O atom. There are intramolecular non-classical hydrogen bonds (Table 2). There are also intermolecular close contacts between Cl and O atoms; O1···Cl2 $(x, \frac{1}{2} - y, -\frac{1}{2} + z)$ 3.212 (2) Å (Fig. 2).

Figure 1

A view of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

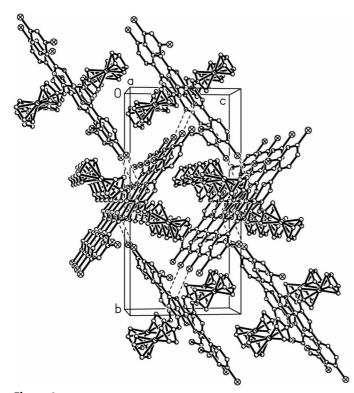


Figure 2 A packing diagram of (I), showing the Cl···O short contacts.

Experimental

Ferrocenecarboxaldehyde was dissolved in anhydrous ethanol and the resulting solution was added dropwise to a solution of 2,4-dichlorobenzoylhydrazine in anhydrous ethanol under reflux, with stirring. A red precipitate appeared immediately and the reaction mixture was allowed to reflux for 2 h with stirring. The mixture was cooled to room temperature and the product collected on a Buchner funnel, washed twice with ethanol and diethyl ether, recrystallized from anhydrous ethanol and dried in vacuo. The product obtained was dissolved in anhydrous ethanol, then a solution of Ni(OAc)₂. 4H₂O in anhydrous ethanol was added dropwise to it with stirring at room temperature. The mixture was stirred continuously for 20 min at room temperature and for 6-8 h under reflux. A red solid formed, was filtered off, and the filtrate collected. After four weeks, red crystals of (I) suitable for diffraction analysis had precipitated from the mother liquor.

Crystal data

 $[Ni(C_{18}H_{13}Cl_2FeN_2O)_2]$ $D_x = 1.631 \text{ Mg m}^{-3}$ $M_{-} = 858.82$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 25 a = 7.032(1) Å reflections b = 22.455(4) Å $\theta = 12.1 - 14.9^{\circ}$ $\mu=1.70~\mathrm{mm}^{-1}$ c = 11.075 (2) Å $\beta = 91.36 (3)^{\circ}$ T = 293 (2) K $V = 1748.3 (5) \text{ Å}^3$ Block, red Z = 2 $0.30 \times 0.25 \times 0.20$ mm

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.599, T_{\max} = 0.716$ 5629 measured reflections 3082 independent reflections 2869 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.01P)^2]$
$wR(F^2) = 0.094$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
3082 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
223 parameters	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.056$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -8 \rightarrow 8$

 $k = 0 \rightarrow 26$

 $l=0\rightarrow 13$

5 standard reflections

every 300 reflections

intensity decay: none

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	1.8450 (17)	N1-C11	1.299 (3)
Ni1-N1	1.859 (2)	N1-N2	1.416 (3)
O1-C12	1.304 (3)	N2-C12	1.305 (3)
O1-Ni1-N1	83.73 (8)	C12-N2-N1	106.7 (2)
C12-O1-Ni1	110.27 (16)	O1-C12-N2	124.7 (2)
C11-N1-N2	118.2 (2)	O1-C12-C18	115.5 (2)
N2-N1-Ni1	114.56 (16)	N2-C12-C18	119.6 (2)

Table 2

ŀ	lyc	irog	en-	bond	ing	geome	try ((A, `).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C2 - H2 \cdots N2 \\ C11 - H11 \cdots O1^i \end{array}$	0.93	2.53	2.969 (4)	109
	0.93	2.42	2.957 (3)	117

Symmetry code: (i) 2 - x, 1 - y, -z.

The positions of all H atoms were fixed geometrically and refined as riding on their parent atoms (C-H 0.93 Å).

Data collection: CAD-4 SDP/VAX (Enraf-Nonius, 1989); cell refinement: CAD-4 SDP/VAX; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

The authors are grateful to the NSF (QT program) and the Foundation of the Key Teacher from the Ministry of Education of PRC for their financial support.

References

Ali, M. A. & Bose, R. N. (1984). Polyhedron, 3, 517-522.

Ali, M. A., Livingstone, S. E. & Phillips, D. J. (1973). *Inorg. Chim. Acta*, **7**, 179–186.

Enraf–Nonius (1989). *CAD-4 SDP/VAX*. Delft Instruments X-ray Diffraction, PO Box 811, 2600 AV Delft, The Netherlands.

Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (2000). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Molecular Structure Corporation (1989). *TEXSAN*. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.